Uncertainty quantification of multiphysics systems represents numerous mathematical and computational challenges. Indeed, uncertainties that arise in each physics in a fully coupled system must be captured throughout the whole system, the so-called curse of dimensionality. We present techniques for mitigating the curse of dimensionality in network-coupled multiphysics systems by using the structure of the network to transform uncertainty representations as they pass between components. When incorporated into a Newton-based nonlinear elimination solution scheme, these techniques allow efficient and robust uncertainty quantification of network systems. Examples relevant to the simulation of nuclear power plants will be discussed.

Co-Authors: John Red-Horse, Tim Wildey — Sandia National Laboratories, Maarten Arnst – University of Liège, Paul Constantine – Colorado School of Mines, and Roger Ghanem – University of Southern California,